Epidemiology of Arthritogenic Arboviruses Affecting Travelers

Susan Hills MBBS, MTH
Medical Epidemiologist
Division of Vector-Borne Diseases
Centers for Disease Control and Prevention

16th Conference of the International Society of Travel Medicine
June 8, 2019

What: Alphaviruses

Symptoms of alphaviral diseases

Why is clinician awareness of these diseases important?

- Disease burden
 - Common: Chikungunya
 - Less common: Ross River, Mayaro, O’nyong-nyong, Sindbis
- Geographically widely distributed

Potential for rapid spread
Travelers can be sentinels of infection

Traveler’s role in spread of infection

Chikungunya

- First recognized during outbreak in Tanzania in 1952–53
- ‘that which bends up’ or ‘to become contorted’ (Makonde language)

Transmission cycle

Sylvatic cycle

Acknowledgement for graphic: Dr. Ann Powers, CDC
Transmission cycle

Sylvatic cycle
- Aedes furcifer, Aedes africanus
- Chimpanzees, monkeys, baboons

Urban cycle
- Aedes aegypti
- Aedes albopictus
- Urban cycle
- Sylvatic cycle

Mosquito vectors

- Aedes aegypti
 - Identified by white stripes on bodies and legs
 - Aggressive daytime biters with peak dawn and dusk
 - Breed in containers that hold water

- Aedes albopictus

Transmission cycle

Acknowledgegnt for graphic: Dr. Ann Powers, CDC

Spread of chikungunya virus since 2004*

Chikungunya virus disease cases reported among travelers, United States, 2009–2018 –

Risk area for chikungunya virus transmission*

Travel destination for U.S. travelers with chikungunya virus disease, 2018–19*

*As of May 2018

*As of May 2018

Source: CDC

Source: CDC

Source: CDC

Source: CDC

* Preliminary data for 136 travelers reported to ArboNET with travel destination noted
Ross River virus infection

Ross River virus

- **First isolated:** Ross River, Townsville, Australia, 1959
- **Primary vectors:** Aedes and Culex species mosquitoes
- **Reservoir hosts:** Marsupials

Risk areas

- **Australia**
 - Average of 5,000 cases/year with periodic outbreaks
- **Papua New Guinea**
Additional risk areas – Pacific Islands region

- Large outbreak South Pacific in 1979–1980
- Locally, no outbreaks or cases reported since
- Data suggest Ross River virus might be established or be periodically reintroduced with local transmission
 - Traveler cases from 1997–2009 in tourists to Fiji
 - Serosurvey evidence in French Polynesia and American Samoa

Ross River virus infections in travelers to Australia

- Reported in small numbers but regularly

Mayaro virus infection

Mayaro virus

- First isolated: Mayaro County, Trinidad, 1954
- Primary vectors: *Haemagogus* species mosquitoes
- Reservoir hosts: Non-human primates

Countries with reported Mayaro cases

Human exposure and infection
Published cases in international travelers, 1996–2018

<table>
<thead>
<tr>
<th>Year</th>
<th>Nationality</th>
<th>Travel destination</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>United States</td>
<td>Peru</td>
<td>1</td>
</tr>
<tr>
<td>1997</td>
<td>United States</td>
<td>Peru</td>
<td>1</td>
</tr>
<tr>
<td>1999*</td>
<td>United States</td>
<td>Bolivia</td>
<td>2</td>
</tr>
<tr>
<td>2008**</td>
<td>Dutch</td>
<td>Suriname</td>
<td>3</td>
</tr>
<tr>
<td>2010</td>
<td>French</td>
<td>Brazil (Amazon)</td>
<td>4</td>
</tr>
<tr>
<td>2011</td>
<td>Swiss</td>
<td>Peru (Amazon)</td>
<td>5</td>
</tr>
<tr>
<td>2012</td>
<td>German</td>
<td>Bolivia (Amazon)</td>
<td>6</td>
</tr>
<tr>
<td>2013</td>
<td>German</td>
<td>French Guiana</td>
<td>7</td>
</tr>
<tr>
<td>2013</td>
<td>Dutch</td>
<td>Brazil (Amazon)</td>
<td>8</td>
</tr>
<tr>
<td>2013</td>
<td>French</td>
<td>French Guiana</td>
<td>9</td>
</tr>
<tr>
<td>2014</td>
<td>German</td>
<td>Ecuador</td>
<td>10</td>
</tr>
<tr>
<td>2014</td>
<td>German</td>
<td>Bolivia</td>
<td>11</td>
</tr>
</tbody>
</table>

*Probable case; **Possible infection in partner also infected

O’nyong-nyong virus and Sindbis virus infection

O’nyong-nyong*

First isolated: Uganda, 1959

Primary vectors: Anopheles species mosquitoes

Vertebrate hosts: Unknown

* ‘Very painful weakening of the joints’

Geographical distribution of O’nyong-nyong virus

Source: Rezza et al., 2017. Pathogens and Global Health

O’nyong-nyong cases in travelers

Sindbis

First isolated: Sindbis district, Egypt, 1952

Primary vectors: Culex, Aedes, and Culiseta species mosquitoes

Vertebrate hosts: Birds

O’nyong-nyong virus and Sindbis virus infection

Geographical distribution of O’nyong-nyong virus

Source: Rezza et al., 2017. Pathogens and Global Health

O’nyong-nyong cases in travelers

Sindbis

First isolated: Sindbis district, Egypt, 1952

Primary vectors: Culex, Aedes, and Culiseta species mosquitoes

Vertebrate hosts: Birds
Summary

- Chikungunya: most common disease causing arthralgia in tropical/subtropical areas
- Other alphaviruses to keep in mind
 - Australia and the Pacific: Ross River virus disease
 - Africa: O’nyong-nyong
 - South/Central America: Mayaro
 - South Africa, Northern Europe: Sindbis

Why are arboviruses emerging?

Human travel

- and covering greater distances with increasing speed
- allowing rapid transport of pathogens

Growth in tourist numbers

Spread of vectors

- Adaptable to a range of habitats
- Adaptable to cold temperatures

Source: Kraemer et al, 2015. eLife
International trade

Viral adaption

- Chikungunya virus developed a mutation that allows easier transmission by Aedes albopictus

Urbanization

- Urbanization of human populations

Climate change

What next?

What is needed?
- Appropriate vector
- Vertebrate host
- Suitable environmental conditions
- Susceptible population

43

44

45

46

47

48
Acknowledgements
Dr Bertrand Sudre
European Center for Disease Control and Prevention
Dr Ann Powers
U.S. Centers for Disease Control and Prevention

Susan Hills
U.S. Centers for Disease Control and Prevention
Email: shills@cdc.gov